IP Version 6 (IPv6, or IPng)

The evolution of TCP/IP technology has led on to attempts to solve problems that improve service and extend functionalities. Most researchers seek new ways to develop and extend the improved technology, and millions of users want to solve new networking problems and improve the underlying mechanisms.

The motivation behind revising the protocols arises from changes in underlying technology: first, computer and network hardware continues to evolve; second, as programmers invent new ways to use TCP/IP, additional protocol support is needed; third, the global Internet has experienced huge growth in size and use.

This section examines a proposed revision of the Internet protocol which is one of the most significant engineering efforts so far. The network layer protocol is currently IPv4. IPv4 provides the basic communication mechanism of the TCP/IP suite.

Although IPv4 is well designed, data communication has evolved since the inception of IPv4 in the 1970s. Despite its sound design, IPv4 has some deficiencies that make it unsuitable for the fast-growing Internet. The IETF decided to assign the new version of IP and to name it IPv6 to distinguish it from the current IPv4.

The proposed IPv6 protocol retains many of the features that contributed to the success of IPv4. In fact, the designers have characterised IPv6 as being basically the same as IPv4 with a few modifications: IPv6 still supports connectionless delivery, allows the sender to choose the size of a datagram, and requires the sender to specify the maximum number of hops a datagram can make before being terminated.

In addition, IPv6 also retains most of IPv4’s options, including facilities for fragmentation and source routing. IP version 6 (IPv6), also known as the Internet Protocol next generation (IPng), is the new version of the Internet Protocol, designed to be a full replacement for IPv4.

IPv6 has an 128-bit address space, a revised header format, new options, an allowance for extension, support for resource allocation and increased security measures. However, due to the huge number of systems on the Internet, the transition from IPv4 to IPv6 cannot occur at once.

It will take a considerable amount of time before every system in the Internet can move from IPv4 to IPv6. RFC 2460 defines the new IPv6 protocol. IPv6 differs from IPv4 in a number of significant ways:

  • The IP address length in IPv6 is increased from 32 to 128 bits.
  • IPv6 can automatically configure local addresses and locate IP routers to reduce configuration and setup problems.
  • The IPv6 header format is simplified and some header fields dropped. This new header format improves router performance and make it easier to add new header types.
  • Support for authentication, data integrity and data confidentiality are part of the IPv6 architecture.
  • A new concept of flows has been added to IPv6 to enable the sender to request special handling of datagrams.

IPv4 has a two-level address structure (netid and hostid) categorised into five classes (A, B, C, D and E). The use of address space is inefficient. For instant, when an organisation is granted a class A address, 16 million addresses from the address space are assigned for the organisation’s exclusive use.

On the other hand, if an organisation is granted a class C address, only 256 addresses are assigned to this organisation, which may not be enough. Soon there will be no addresses left to assign to any new system that wants to be connected to the Internet.

Although the subnetting and supernetting strategies have alleviated some addressing problems, subnetting and supernetting make routing more complicated. The encryption and authentication options in IPv6 provide confidentiality and integrity of the packet. However, no encryption or authentication is provided by IPv4.